Unique continuation for the Schrödinger equation with gradient vector potentials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian beam methods for the Schrödinger equation with discontinuous potentials

We propose Eulerian and Lagrangian Gaussian beam methods for the Schrödinger equation with discontinuous potentials. At the quantum barriers where the potential is discontinuous, we derive suitable interface conditions to account for quantum scattering information. These scattering interface conditions are then built into the numerical fluxes in the Eulerian level set formulation of the Gaussia...

متن کامل

Unique Continuation Property for the Kadomtsev-petviashvili (kp-ii) Equation

We generalize a method introduced by Bourgain in [2] based on complex analysis to address two spatial dimensional models and prove that if a sufficiently smooth solution to the initial value problem associated with the Kadomtsev-Petviashvili (KP-II) equation (ut + uxxx + uux)x + uyy = 0, (x, y) ∈ R, t ∈ R, is supported compactly in a nontrivial time interval then it vanishes identically.

متن کامل

Unique continuation and approximate controllability for a degenerate parabolic equation

This paper studies unique continuation for weakly degenerate parabolic equations in one space dimension. A new Carleman estimate of local type is obtained to deduce that all solutions that vanish on the degeneracy set, together with their conormal derivative, are identically equal to zero. An approximate controllability result for weakly degenerate parabolic equations under Dirichlet boundary c...

متن کامل

Unique continuation property for a higher order nonlinear Schrödinger equation

We prove that, if a sufficiently smooth solution u to the initial value problem associated with the equation ∂t u+ iα∂2 xu+ β∂3 xu+ iγ |u|2u+ δ|u|∂xu+ u∂xu= 0, x, t ∈R, is supported in a half line at two different instants of time then u≡ 0. To prove this result we derive a new Carleman type estimate by extending the method introduced by Kenig et al. in [Ann. Inst. H. Poincaré Anal. Non Linéair...

متن کامل

The Random Schrödinger Equation: Homogenization in Time-Dependent Potentials

We analyze the solutions of the Schrödinger equation with the low frequency initial data and a time-dependent weakly random potential. We prove a homogenization result for the low frequency component of the wave field. We also show that the dynamics generates a non-trivial energy in the high frequencies, which do not homogenize – the high frequency component of the wave field remains random and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2007

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-07-08813-2